For the linkage shown, determine the force Q required for equilibrium when l = 18 in., M = 600 lb in., and θ = 70°.
For the linkage shown, determine the force Q required for equilibrium when l = 18 in., M = 600 lb in., and θ = 70°.
\( \tan \delta \phi = \frac{\delta X_b}{l/2} \)
\( \delta \phi = \frac{2\delta X_b}{l} \)
\( \delta X_B = \frac{l\delta \phi}{2} \)
Since the horizontal displacement is the same, \( \delta X_c = \delta X_B = \frac{l\delta \Phi}{2} \)
Now, From ΔCC’X:
\( \cos \Theta = \frac{\delta X_c}{\delta C} \)
\( \delta C = \frac{\delta X_c}{\cos \Theta} \)
\( \delta C = \frac{l\delta \Phi}{2\cos \Theta} \)
\( \delta C = \frac{18\delta \Phi}{2\cos 70} \)
\( \delta C = 26.31 \delta \phi \) ----- (2)
Then, using eqn (2) in eqn (1):
\( 600\delta \phi - Q \times 26.31\delta \phi = 0 \)
∴ \( Q = 22.80 \text{ lb} \)




Comments
Post a Comment